Optimization of Robot Configurations for Assistive Tasks
نویسندگان
چکیده
Robots can provide assistance with activities of daily living (ADLs) to humans with motor impairments. Specialized robots, such as desktop robotic feeding systems, have been successful for specific assistive tasks when placed in fixed and designated positions with respect to the user. General-purpose mobile manipulators could act as a more versatile form of assistive technology, able to perform many tasks, but selecting a configuration for the robots from which to perform a task can be challenging due to the high number of degrees of freedom of the robots and the complexity of the tasks. As with the specialized, fixed robots, once in a good configuration, another system or the user can provide the fine control to perform the details of the task. In this short paper, we present Task-centric Optimization of robot Configurations (TOC), a method for selecting configurations for a PR2 and a robotic bed to allow the PR2 to provide effective assistance with ADLs. TOC builds upon previous work, Taskcentric initial Configuration Selection (TCS), addressing some of the limitations of TCS. Notable alterations are selecting configurations from the continuous configuration space using a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization, introducing a joint-limit-weighted manipulability term, and changing the framework to move all optimization offline and using function approximation at run-time. To evaluate TOC, we created models of 13 activities of daily living (ADLs) and compared TOC’s and TCS’s performance with these 13 assistive tasks in a computer simulation of a PR2, a robotic bed, and a model of a human body. TOC performed as well or better than TCS in most of our tests against state estimation error. We also implemented TOC on a real PR2 and a real robotic bed and found that from the TOC-selected configuration the PR2 could reach all task-relevant goals on a mannequin on the bed.
منابع مشابه
Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller
Human-humanoid collaborative tasks require that the robot take into account the goals of the task, interaction forces with the human, and its own balance. We present a formulation for a real-time humanoid controller which allows the robot to keep itself stable, while also assisting the human in achieving their shared objectives. This is achieved with a multirobot quadratic program controller, w...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملReusable Software Components for Robots using Fuzzy Abstractions
Mobile robots today, while varying greatly in design, often have a large number of similarities in terms of their tasks and goals. Navigation, obstacle avoidance, and vision are all examples. In turn, robots of similar design, but with varying configurations, should be able to share the bulk of their controlling software. Any changes required should be minimal and ideally only to specify new ha...
متن کاملStiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کامل